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NEW FORM OF NJÅSTAD’S α-SET AND LEVINE’S

SEMI-OPEN SET

Shyamapada Modak* and Md. Monirul Islam**

Abstract. This paper gives an extensive study of ideal topologi-
cal space and introduce two new types of set with the help of local
function. Several characterizations of these sets will also be dis-
cussed through this paper and finally gives new representation of
α-sets and semi-open sets.

1. Introduction

The study of a-open sets in topological space was introduced by Ekici
in [4]. Further he has also studied this type of sets at various aspect in
his paper [4, 5, 6, 7]. One of the most important property of this set
is, collection of all a-open sets in a topological space (X, τ) forms a
topology and it is denoted as τa. Most recently the Authors Al-Omeri
et al. in [2, 1] have introduced ideal on this topological space however the
ideal on topological space was first introduced by Kuratowski [13] and
Vaidyanathaswamy [18] and it is called ideal topological space. Local
function [9, 12, 3, 10, 16] in ideal topological space has been taken an
important role for further study of ideal topological space.

Through this paper, we will consider Al-Omeri et al.’s ideal topologi-
cal space and give some representations of Nj̊astad’s α-open set [15] and
Levine’s semi-open set [14] with the help of ℜa and ()a

∗
operators. For

this job, we shall take the help of two new types of sets as a mathemati-

cal tool, one of them is ℜa
a∗ set and second one is ℜ̇a

a∗
. We also discuss

several characterizations related to these two sets.
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2. Preliminaries

Let (X, τ) be a topological space with no separation properties as-
sumed. For a subset A of a topological space (X, τ), Cl(A) and Int(A)
denote the closure and interior of A in (X, τ), respectively. A subset
A of X is said to be regular open [17] (resp. semi-open [14, 8], α-open
[15]) if A = Int(Cl(A)) (resp. A ⊆ Cl(Int(A)), A ⊆ Int(Cl(Int(A))).
A subset A of X is called δ-open [19] if, for each x ∈ A, there exists a
regular open set G such that x ∈ G ⊆ A. The family of all α-open (resp.
semi-open) sets in a topological space (X, τ) is denoted by τα (resp.
SO(X, τ)). The complement of δ-open set is called δ-closed. A point
x ∈ X is called a δ-cluster point of A if Int(Cl(V )) ∩ A ̸= ∅, for each
open set V containing x. The set of all δ-cluster points of A is called
the δ-closure of A and it is denoted by Clδ(A) [19]. The set δ-interior
of A is the union of all regular open sets of X contained in A and it is
denoted by Intδ(A) [19]. A is δ-open if Intδ(A) = A, δ-open sets form
a topology τ δ.

A subset A of (X, τ) is said to be a-open (resp. a-closed) [5, 6, 7] if
A ⊆ Int(Cl(Intδ(A))) (resp. Cl(Int(Clδ(A))) ⊆ A). The family of all
a-open sets of X form a topology on X. This collection is denoted by τa

[5], and τa(x) is denoted as the collection of all a-open sets containing
x ∈ X. If A is a subset of a topological space (X, τ), then the intersection
of all a-closed sets containing A is called the a-closure of A and is denoted
by aCl(A) [4]. The a-interior of A, denoted by aInt(A), is defined by
the union of all a-open sets contained in A [4].

A collection I ⊆ ℘(X) is said to be an ideal [13] on X if B ⊆ A ∈ I
implies B ∈ I and A, B ∈ I implies A ∪ B ∈ I. Let I be an ideal on
the topological space (X, τ), then (X, τ, I) is called an ideal topological
space. Two operators ()a

∗
and ℜa have been introduced and studied by

Al-Omeri et al. [1, 2] in ideal topological spaces. These two operators
are defined by the following way:

For a subset A of an ideal topological space (X, τ, I), Aa∗ = {x ∈ X :
U ∩A /∈ I, for every U ∈ τa(x)} and ℜa(A) = X \ (X \A)a∗ = {x ∈ X :
there exists Ux ∈ τa(x) such that Ux \ A ∈ I}. This ()a

∗
operator gives

a topology [2, 1] and it is denoted as τa
∗
, where β(I, τ) = {V \ J : V ∈

τa, J ∈ I} is a basis of it. We will denote ‘Inta
∗
’ and ‘Cla

∗
’ as ‘interior’

operator and ‘closure’ operator of (X, τa
∗
) respectively.

Theorem 2.1. [2] Let (X, τ, I) be an ideal topological space, then
the following properties are equivalent:

1. τa ∩ I = {∅};
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2. If I ∈ I, then aInt(I) = ∅;
3. For every G ∈ τa, G ⊆ Ga∗ ;
4. X = Xa∗ .

Now we prove a theorem on ideal topological space which is mean-
ingful for this paper.

Theorem 2.2. Let (X, τ, I) be an ideal topological space. If O ∈ τa

then τa ∩ I = {∅} if and only if Oa∗ = aCl(O).

Proof. Suppose τa ∩ I = {∅}. It is obvious that Oa∗ ⊆ aCl(O). For
reverse inclusion, let x ∈ aCl(O). Then for every Ux ∈ τa(x), Ux∩O ̸= ∅.
Implies that Ux ∩O /∈ I (as I ∩ τa = {∅}). Thus x ∈ Oa∗ .

Converse is obvious from Theorem 2.1.

Theorem 2.3. Let (X, τ, I) be an ideal topological space, then the
following properties are equivalent:

1. τa ∩ I = {∅};
2. If I ∈ I, then Int(I) = ∅;
3. For every G ∈ τa, G ⊆ Ga∗ ;
4. X = Xa∗ ;
5. If O ∈ τa, then Oa∗ = aCl(O).

Proof. Obvious from Theorem 2.1 and Theorem 2.2.

Definition 2.4. [1] Let (X, τ, I) be an ideal topological space. An
operator ℜa : ℘(X) → τa is defined as follows for everyA ∈ ℘(X), ℜa(A) =
X \ (X \A)a∗ .

Equivalently, ℜa(A) = {x ∈ X : there exists a U ∈ τa(x) such that
U \A ∈ I}.

For this section, following theorem is an important part.

Theorem 2.5. Let (X, τ, I) be an ideal topological space. τa ∩ I =
{∅} if and only if (ℜa(A))a

∗
= aCl(ℜa(A)) for every A ⊆ X.

Proof. Let τa ∩I = {∅}. It is obvious that (ℜa(A))a
∗ ⊆ aCl(ℜa(A)).

For reverse inclusion, let x ∈ aCl(ℜa(A)). Then for every a-open set
Vx containing x, Vx ∩ ℜa(A) ̸= ∅, implies that Vx ∩ ℜa(A) /∈ I, since
τa∩I = {∅}. Therefore x ∈ (ℜa(A))a

∗
. Hence (ℜa(A))a

∗
= aCl(ℜa(A)).

Conversely suppose that (ℜa(A))
a∗ = aCl(ℜa(A)) for every A ⊆ X.

Then putting A = X, the condition (ℜa(A))
a∗ = aCl(ℜa(A)) gives

(X\(X\X)a
∗
)a

∗
= aCl(X\(X\X)a

∗
) i.e., Xa∗ = aCl(X). SoXa∗ = X,

and hence τa ∩ I = {∅} (using Theorem 2.3).



168 Shyamapada Modak and Md. Monirul Islam

Using this Theorem we get following:

Theorem 2.6. Let (X, τ, I) be an ideal topological space, then the
following properties are equivalent:

1. τa ∩ I = {∅};
2. ℜa(∅) = ∅;
3. If A ⊆ X is closed, then ℜa(A)

a∗ \A = ∅;
4. If A ⊆ X, then aInt(aCl(A)) = ℜa(aInt(aCl(A)));
5. A is regular open in (X, τa), A = ℜa(A);
6. If U ∈ τa, then ℜa(U) ⊆ aInt(aCl(U)) ⊆ Ua∗ ;
7. If I ∈ I, then ℜa(I) = ∅;
8. (ℜa(A))

a∗ = aCl(ℜa(A)), for every A ⊆ X.

Proof. Obvious from Theorem 2.1, Theorem 2.2, Theorem 2.3, and
Theorem 2.5.

3. ℜa
∗-sets

For representation of α-open sets and semi-open sets the following is
an important set:

Definition 3.1. Let (X, τ, I) be an ideal topological space. A subset
A of X is called a ℜa

∗-set if A ⊆ (ℜa(A))
a∗ .

The collection of all ℜa
∗-sets in (X, τ, I) is denoted by ℜa

∗(X, τa).
Following example is the existence of ℜa

∗-set:

Example 3.2. Let X = {e, b, c, d}, τ = {∅, X, {e}, {c}, {e, b}, {e, c},
{e, b, c}, {e, c, d}}, I = {∅, {b}}. Regular open sets are ∅, X, {c}, {e, b}.
Then τa = {∅, X, {c}, {e, b}, {e, b, c}}. Now ℜa({e, c, d}) = X \({b})a∗ =
X. Thus {e, c, d} ⊆ (ℜa({e, c, d}))a

∗
.

It is obvious that ℜa
∗(X, τa) ⊆ ℜa(X, τa), where ℜa(X, τa) = {A ⊆

X : A ⊆ aCl(ℜa(A))} [11].
The reverse inclusion need not hold:

Example 3.3. Let X = {e, b, c, d}, τ = {∅, X, {e}, {c}, {e, b}, {e, c},
{e, b, c}, {e, c, d}}, I = {∅, {c}}. Regular open sets are ∅, X, {c}, {e, b}.
Then τa = {∅, X, {c}, {e, b}, {e, b, c}}. Then ℜa({c, d}) = X\({e, b})a∗ =
X \ {e, b, d} = {c} and (ℜa({c, d}))a

∗
= ∅. Thus {c, d} /∈ ℜa

∗(X, τa).
Again aCl({c}) = {c, d}. Hence {c, d} ∈ ℜa(X, τa).

We shall discuss the properties of ℜa
∗-sets:
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Theorem 3.4. Let {Ai : i ∈ △} be a collection of nonempty ℜa
∗-sets

in an ideal topological space (X, τ, I), then
∪

i∈△Ai ∈ ℜa
∗(X, τa).

Proof. For each i ∈ △, Ai ⊆ (ℜa(Ai))
a∗ ⊆ (ℜa(

∪
i∈△Ai))

a∗ . This

implies
∪

i∈△Ai ⊆ (ℜa(
∪

i∈△Ai))
a∗ . Thus

∪
i∈△Ai ∈ ℜa

∗(X, τ).

Following example shows that the intersection of two ℜa
∗ sets in

(X, τ, I) may not be a ℜa
∗-set.

Example 3.5. Let X = {e, b, c, d}, τ = {∅, X, {e}, {c}, {e, b}, {e, c},
{e, b, c}, {e, c, d}}, I = {∅, {b}}. Regular open sets are ∅, X, {c}, {e, b}.
Then τa = {∅, X, {c}, {e, b}, {e, b, c}}. Therefore (ℜa({c, d}))a

∗
= (X \

({e, b})a∗)a∗ = (X\{e, b, d})a∗ = ({c})a∗ = {c, d} and (ℜa({e, b, d}))a
∗
=

(X\({c})a∗)a∗ = (X\{c, d})a∗ = ({e, b})a∗ = {e, b, d}. Now (ℜa({d}))a
∗
=

(X \ ({e, b, c})a∗)a∗ = (X \ {e, b, c, d})a∗ = ∅. Hence we have {c, d} and
{e, b, d} are ℜa

∗ sets but their intersection {d} is not a ℜa
∗-set.

Theorem 3.6. Let (X, τ, I) be an ideal topological space. If A ∈ τa
∗

then A ∈ ℜa
∗(X, τa), where τa ∩ I = {∅}.

Proof. Given that A ∈ τa
∗
. Then Inta

∗
(A) = A ∩ ℜa(A) [1]. Again

ℜa(A) ∈ τa and τa ∩ I = {∅} implies that (ℜa(A))
a∗ = aCl(ℜa(A)).

Thus A ⊆ aCl(ℜa(A)). Thus A ∈ ℜa
∗(X, τa).

Corollary 3.7. Let (X, τ, I) be an ideal topological space. If A ∈ τa

then A ∈ ℜa
∗(X, τa), where τa ∩ I = {∅}.

Proof. Proof is obvious from the fact that τa ⊆ τa
∗
.

From Example 3.5, we have intersection of two ℜa
∗-sets need not be

a ℜa
∗-set in general. But following hold:

Theorem 3.8. Let (X, τ, I) be an ideal topological space and A ∈
ℜa

∗(X, τa). If U ∈ τa
α
, then U ∩A ∈ ℜa

∗(X, τa), where τa ∩ I = {∅}.

Proof. U ∩A ⊆ aInt(aCl(aInt(U)))∩ (ℜa(A))
a∗ ⊆ (aInt(aCl(ℜa(U)

)))∩ (ℜa(A))
a∗ ⊆ (aInt(aCl(ℜa(U))))∩ (aCl(ℜa(A))). Since (aInt(aCl

(ℜa(U)))) is a-open, then U∩A ⊆ aCl[aInt((aCl(ℜa(U)))∩(ℜa(A)))] ⊆
aCl[aInt[aCl(ℜa(U)) ∩ ℜa(A)]] as ℜa(A) is a-open set. This implies
U ∩A ⊆ aCl[aInt[aCl[ℜa(U)∩ℜa(A)]]] = aCl[aInt[aCl(ℜa(U ∩A))]] ⊆
aCl(ℜa(U ∩A)) = (ℜa(U ∩A))a

∗
. Thus U ∩A ∈ ℜa

∗(X, τa).
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4. ℜ̇∗
a-sets

Through this section we give the representation of α-sets and semi-
open sets:

Definition 4.1. Let (X, τ, I) be an ideal topological space. A subset

A of X is called a ℜ̇∗
a-set if A ⊆ aInt(ℜa(A))

∗.

The collection of all ℜ̇∗
a-set in (X, τ, I) is denoted by ℜ̇∗

a(X, τa).
The collection ℜa

∗(X, τa) does not form a topology, but the collection

ℜ̇∗
a(X, τa) forms a topology.

At first we give an Example, which is the existence of ℜ̇∗
a-set.

Example 4.2. Let X = {e, b, c, d}, τ = {∅, X, {e}, {c}, {e, b}, {e, c},
{e, b, c}, {e, c, d}}, I = {∅, {c}}. Regular open sets are: ∅, X, {c}, {e, b}.
Then τa = {∅, X, {c}, {e, b}, {e, b, c}}. Now ℜa({e, b}) = X \({c, d})a∗ =
X \ {d} = {e, b, c}. Therefore aInt(ℜa({e, b}))a

∗
= aInt({e, b, d}) =

{e, b}. Hence {e, b} ∈ ℜ̇∗
a(X, τa).

It is obvious that ℜ̇∗
a(X, τa) ⊆ ℜa

∗(X, τa) and ℜ̇∗
a(X, τa) ⊆ τa

ℜa

hold, where τa
ℜa

= {A ⊆ X : A ⊆ aInt(aCl(ℜa(A)))} [11]. For reverse
direction we discuss following:

Example 4.3. Let X = {e, b, c, d}, τ = {∅, X, {e}, {c}, {e, b},
{e, c}, {e, b, c}, {e, c, d}}, I = {∅, {b}}. Regular open sets are: ∅, X, {c},
{e, b}. Then τa = {∅, X, {c}, {e, b}, {e, b, c}}. Then
(ℜa({e, b, d}))a

∗
= (X\({c})a∗)a∗ = (X\{c, d})a∗ = ({e, b})a∗ = {e, b, d}

and aInt(ℜa({e, b, d}))a
∗

= {e, b}. Thus {e, b, d} ∈ ℜa
∗(X, τa) but

{e, b, d} /∈ ℜ̇∗
a(X, τa).

Example 4.4. Let X = {e, b, c, d}, τ = {∅, X, {e}, {c}, {e, b}, {e, c},
{e, b, c}, {e, c, d}}, I = {∅, {c}}. Regular open sets are: ∅, X, {c}, {e, b}.
Then τa = {∅, X, {c}, {e, b}, {e, b, c}}. Then
aInt(ℜa({c}))a

∗
= (X \ ({e, b, d})a∗)a∗ = (X \ {e, b, d})a∗ = ({c})a∗ = ∅.

Again aInt(aCl({c})) = {c}. Thus {c} ∈ τa
ℜa

but {c} /∈ ℜ̇∗
a(X, τa).

Theorem 4.5. Let (X, τ, I) be an ideal topological space, then the

collection ℜ̇∗
a(X, τa) = {A ⊆ X : A ⊆ aInt(ℜa(A))

a∗} forms a topology
on X, where τa ∩ I = {∅}.

Proof. (i) From Theorem 2.6, it is obvious that ∅, X ∈ ℜ̇∗
a(X, τa).

(ii) Let Ai ∈ ℜ̇∗
a(X, τa) for all i. Now we are to show that

∪
iAi ∈

ℜ̇∗
a(X, τa). SinceAi ⊆

∪
iAi, ℜa(Ai) ⊆ ℜa(

∪
iAi) [1]. Thus (ℜa(Ai))

a∗ ⊆
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(ℜa(
∪

iAi))
a∗ . So Ai ⊆ aInt(ℜa(Ai))

a∗ ⊆ aInt(ℜa(
∪

iAi))
a∗ . Therefore∪

iAi ∈ ℜ̇∗
a(X, τa).

(iii) Let A1, A2 ∈ ℜ̇∗
a(X, τa). We are to show that A1 ∩ A2 ∈

ℜ̇∗
a(X, τa). If A1∩A2 = ∅, we are done. Let A1∩A2 ̸= ∅. Let x ∈ A1∩A2.

Now A1 ⊆ aInt(ℜa(A1)
a∗) and A2 ⊆ aInt(ℜa(A2)

a∗), implies that x ∈
aInt(ℜa(A1))

a∗∩aInt(ℜa(A2))
a∗ . So x ∈ aInt[(ℜa(A1))

a∗∩(ℜa(A2))
a∗ ].

Therefore there exists an a-open set Vx containing x such that Vx ⊆
[(ℜa(A1))

a∗ ∩ (ℜa(A2))
a∗ ]. Let Ux be any a-open set containing x of

(X, τa). Then ∅ ̸= Vx ∩ Ux ⊆ aCl(ℜa(A1)) (by Theorem 2.5) and
Vx ∩ Ux ⊆ aCl(ℜa(A2)) (by Theorem 2.5). Let y ∈ Vx ∩ Ux. Con-
sider any a-open set Gy containing y. Without loss of generality we may
suppose that Gy ⊆ Vx ∩ Ux. So Gy ∩ (ℜa(A1)) ̸= ∅. From definition of
ℜa(A1), there exists a U ∈ τa(x) such that U ⊆ Gy and U \ A1 ∈ I.
Again U ⊆ aCl(ℜa(A2)), so there exists a nonempty open set U ′ ⊆ U
such that U ′ \ A2 ∈ I. Now U ′ \ (A1 ∩ A2) = (U ′ \ A1) ∪ (U ′ \ A2) ⊆
(U \A1)∪ (U ′ \A2) ∈ I. Hence from definition of ℜa, U

′ ⊆ ℜa(A1∩A2).
Since U ′ ⊆ Gy, Gy∩ℜa(A1∩A2). Therefore y ∈ aCl(ℜa(A1∩A2)). Since
y was any point of Vx ∩Ux, it follows that Vx ∩Ux ⊆ aCl(ℜa(A1 ∩A2)),
implies that x ∈ aInt(aCl(ℜa(A1∩A2))) = aInt[(ℜa(A1∩A2))

a∗ ]. Thus

A1 ∩A2 ⊆ aInt[(ℜa(A1 ∩A2))
a∗ ]. Hence A1 ∩A2 ∈ ℜ̇∗

a(X, τa).

From (i), (ii) and (iii) ℜ̇∗
a(X, τa) forms a topology.

For further discussion we mention following:

Proposition 4.6. Let (X, τ, I) be an ideal topological space with
τa ∩ I = {∅}. Then ℜa(A) ̸= ∅ if and only if A contains a nonempty
τa

∗
-interior.

Here we get two corollaries from above Proposition:

Corollary 4.7. Let x ∈ X. Then {x} ∈ ℜa
∗(X, τa) if and only if

{x} is open in X with respect to the topology ℜ∗
a(X, τa).

Proof. Let {x} ∈ ℜa
∗(X, τa) then ℜa({x}) ̸= ∅. By Proposition

4.6, {x} contains a nonempty τa
∗
-interior. Therefore {x} is open in

ℜ∗
a(X, τa). Conversely suppose that {x} is open in ℜ∗

a(X, τa). Then
{x} ⊆ ℜa({x}) [1]. Therefore {x} ⊆ (ℜa({x})a

∗
, since τa ∩ I = {∅} and

ℜa({x}) is open in (X, τa), that is {x} ∈ ℜa
∗(X, τa).

Corollary 4.8. Let x ∈ X. Then {x} ∈ ℜa
∗(X, τa) if and only if

{x} ∈ ℜ∗
a(X, τa).

Proof. Let {x} ∈ ℜa
∗(X, τa), therefore {x} is open in (X, τa) (by

above corollary). Since {x} ⊆ ℜa({x}) [1], {x} ⊆ aInt(aCl(ℜa({x}))).
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Thus {x} ⊆ aInt(ℜa({x}))a
∗
(from Theorem 2.5), and hence {x} ∈

ℜ̇∗
a(X, τa).

Conversely suppose that {x} ∈ ℜ̇∗
a(X, τa), then {x} ⊆ aInt(ℜa({x}))a

∗
,

implies that {x} ⊆ (ℜa({x}))a
∗
, hence {x} ∈ ℜa

∗(X, τa).

Following discussion are the representation for Nj̊astad’s α-set of
(X, τa):

Theorem 4.9. ℜ̇∗
a(X, τa) is the exactly the collection such that A

belongs to ℜ̇∗
a(X, τa) and B belongs to ℜa

∗(X, τa) implies A∩B belongs
to ℜa

∗(X, τa), where τa ∩ I = {∅}.

Proof. Let A ∈ ℜ̇∗
a(X, τa) and B ∈ ℜa

∗(X, τa). Now we are to show
that A ∩ B ∈ ℜa

∗(X, τa). If A ∩ B = ∅, we are done. Let A ∩ B ̸=
∅. Let x ∈ A ∩ B. This implies that x ∈ aInt(ℜa(A))

a∗ , therefore
x ∈ (ℜa(A))

a∗ , and hence x ∈ aCl(ℜa(A)). So for every a-open Ux

containing x, Ux∩ℜa(A) ̸= ∅. Again x ∈ B ⊆ (ℜa(B))a
∗
, then for every

a-open set Vx containing x, Vx∩(ℜa(B))a
∗ ̸= ∅. Therefore for a-open set

Wx = Ux∩Vx containing x, Wx∩ℜa(A) ̸= ∅ and Wx∩ℜa(B) ̸= ∅. Again
Wx ∩ ℜa(A) ⊆ Wx and Wx ∩ ℜa(B) ⊆ Wx. Therefore Wx ∩ [ℜa(A) ∩
ℜa(B)] ̸= ∅. So x ∈ aCl(ℜa(A) ∩ ℜa(B)), that is, x ∈ aCl(ℜa(A ∩ B))
[1]. Hence A∩B ⊆ aCl(ℜa(A∩B)), therefore A∩B ∈ ℜa

∗(X, τa). Next
we consider a subset A of X such that A∩B ∈ ℜa

∗(X, τa) for each B ∈
ℜa

∗(X, τa). We show that A ∈ ℜ̇∗
a(X, τa), that is, A ⊆ aInt(ℜa(A))

a∗ .
If possible suppose that x ∈ A but x /∈ aInt(ℜa(A)

a∗). Therefore x ∈
A ∩ (X \ aInt(ℜa(A))a

∗
) = A ∩ aCl(X \ ℜa(A)

a∗) = A ∩ aCl(C) (say),
where C = X \ ℜa(A)a

∗
. It is obvious that C is a nonempty a-open set,

since (ℜa(A))
a∗ is a nonempty a-closed set. Since x ∈ aCl(C) then for

all open set Vx containing x, Vx ∩ C ̸= ∅. Therefore Vx ∩ ℜa(C) ̸= ∅,
since C ⊆ ℜa(C). This implies that

(4.1) x ∈ aCl(ℜa(C)) ⊆ aCl(ℜa({x} ∪ C))

Again

(4.2) C ⊆ aCl(ℜa(C)) ⊆ aCl(ℜa({x} ∪ C))

From (4.1) and (4.2), {x}∪C ⊆ aCl(ℜa({x}∪C)). Therefore {x}∪C ∈
ℜa

∗(X, τa). Now by hypothesis A∩({x}∪C) is a ℜ̇∗
a. If possible suppose

that there exists y ∈ X and x ̸= y such that y ∈ A∩ ({x}∪C). So y ∈ A
and y ∈ C. Now A = A ∩X and X ∈ ℜa

∗(X, τa), again by hypothesis
A ∈ ℜa

∗(X, τa). Since y ∈ A, y ∈ (ℜa(A))
a∗ , a contradiction to the

fact that y ∈ C = X \ ℜa(A)
a∗ . Thus A ∩ ({x} ∪ C) = {x}. Since

{x} ∈ ℜa
∗(X, τa), then {x} ∈ ℜ̇∗

a(X, τa). So {x} ⊆ aInt(ℜa({x}))a
∗
=
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aInt[(ℜa(A∩({x}∪C)))a
∗
] ⊆ aInt((ℜa(A))

a∗). So x ∈ aInt((ℜa(A))
a∗),

a contradiction to the fact that x /∈ aInt((ℜa(A))a
∗
). Therefore we get

A ⊆ aInt((ℜa(A))
a∗), that is, A ∈ ℜ̇∗

a(X, τa).

Theorem 4.10. Let (X, τ, I) be an ideal topological space, where
τa ∩ I = {∅}. Then SO(X, τa

∗
) = {A ⊆ X : A ⊆ (ℜa(A))

a∗} =
ℜa

∗(X, τa).

Proof. Let A ∈ SO(X, τa
∗
). Then A ⊆ Cla

∗
(Inta

∗
(A)) = Cla

∗
(A ∩

ℜa(A))[1]⊆ Cla
∗
(ℜa(A)) = ℜa(A)∪ (ℜa(A))

a∗ = ℜa(A))
a∗ (by Theorem

2.1). Hence A ∈ ℜa
∗(X, τa). So SO(X, τa

∗
) ⊆ ℜa

∗(X, τa).
For reverse inclusion, letA ∈ ℜa

∗(X, τa). We show thatA ∈ SO(X, τa
∗
).

Given that A ⊆ (ℜa(A))a
∗
, and A ⊆ A, then A ⊆ A∩(ℜa(A))a

∗
. So A ⊆

A∩aCl(ℜa(A)) ⊆ aCl[A∩(ℜa(A))] = aCl(Inta
∗
(A)) ⊆ aCl[(Inta

∗
(A))∪

(Inta
∗
(A))a

∗
] = aCl(Cla

∗
(Inta

∗
(A))) = Cla

∗
(Inta∗(A)), since Cla

∗
(Inta

∗

(A)) is a-closed in (X, τa). ThereforeA ∈ SO(X, τa
∗
). Thus ℜa

∗(X, τa) ⊆
SO(X, τa

∗
). Hence we get the result.

This Theorem is the representation theorem of Levine’s semi-open
sets.

Remark 4.11. Let x ∈ X, then {x} ∈ SO(X, τa
∗
) if and only if

{x} ∈ ℜ̇∗
a(X, τa).

Proof. Proof is obvious from Corollary 4.7.

Theorem 4.12. Let (X, τ, I) be an ideal topological space. ℜ̇∗
a(X, τa)

is exactly the collection such that A belongs to ℜ̇∗
a(X, τa) and B belongs

to SO(X, τa
∗
) implies A∩B belongs to SO(X, τa

∗
), where τa∩I = {∅}

Proof. Proof is obvious from Theorem 4.9 and 4.10.

Now we shall discuss the relation between τa
α
with ℜ̇∗

a(X, τa). For
this we mention a Theorem owning to O. Nj̊astad:

Theorem 4.13. [15] Let (X, τ) be a topological space. τα consists of
exactly those sets for which A ∩B ∈ SO(X, τ) for all B ∈ SO(X, τ).

From above two Theorems we have:

Theorem 4.14. Let (X, τ, I) be an ideal topological space, where

τa ∩ I = {∅}. Then ℜ̇∗
a(X, τa) = τa

∗α
.

This Theorem is the representation theorem of Nj̊astad’s α-sets.
Further we get following remark:

Remark 4.15. Let (X, τ, I) be an ideal topological space, where τa∩
I = {∅}. Then ℜ̇∗

a(X, τa) = (τa
∗α
) = τa

ℜa
.
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